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FOREWORD 

This is Volume II of the final Technical Report for Contract F33615-76-C-5094, United 
States Air Force, Air Force Systems Command and serves to document the results of the 
TF39 engine test used to evaluate components repaired under this program. 

Volume I included the process development and testing associated with each component 
repair. 

This contract with the Aircraft Engine Group, General Electric Company, Cincinnati, Ohio, 
was initiated under Manufacturing Methods Project No. IR889-6, "Cost Effective Repair 
Techniques for Turbine Airfoils." This work was administered under the technical direc­
tion of Mr. Frederick R. Miller of the Air Force Materials Laboratory (AFML/LTM), 
Manufacturing Technology Division, Wright Patterson Air Force Base, Ohio. 

The program was directed by Mr. W. R. Young, Manufacturing Technology Laboratory 
Special Processes Support Project. The principal investigators were Mr. E. L. Kelly 
and Mr. J. A. We in of the Repair and Metallurgical Process Technology Unit. 

Process Development for the selected repairs was accomplished by the personnel from the 
Materials and Process Technology Laboratories under the direction of T. F. Berry. 
Messrs. D. L. Keller, M. K. Mizell, and D. L. Resor performed tests and developed pro­
cedures for fluoride ion cleaning and healing of cracks. Mr. J. W. Zelahy assisted in 
development of mini-bonding process and procedures. Messrs. H. E, Lynch, J. H. Cohen, 
and J. I. Miller of Repair Development Engineering assisted in defining design criteria 
and subsequent conduct of the engine test and evaluation. 
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SECTION I 

INTRODUCTION 

Advanced turbine blades and vanes require the use of sophisticated air cooling techniques, 
costly nickel and cobalt base alloys, and extensive surface protective coatings. Because 
their operating environments cause various types of degeneration which ultimately lead to 
their removal and replacement, cost effectiveness of repair versus replacement must be 
considered in terms of overall life cycle management. 

The purpose of the program initiated by Contract F33615-76-C-5094 was to establish cost 
effective repair techniques for conventionally cast turbine airfoils. The overall program 
objectives were: 

• Select repair processes and airfoil types with generic application to ALC repair 
requirements. 

• Transition advanced process to manufacturing technology. 

• Verify repair procedures by pilot line production and component and/or engine 
test qualifications. 

• Involve the Air Logistics Centers (ALC} at program inception with participation 
throughout to enable timely transition to the ALC' s. 

• Assess repair costs throughout the program to assure cost effectiveness when 
related to new part replacement cost. 

To accomplish these objectives, General Electric conducted a four-phase manufacturing 
technology program within the Aircraft Engine Group. A team of contributors was assigned 
from Group Engineering and Group Manufacturing Divisions. By combining the disciplines 
of repair design, process development, manufacturing technology, and the Aviation Service 
Shops, the program was designed to insure rapid transition of repair technology to advanced 
turbine airfoils. 

During Phase I, Repair Selection, a survey of ALC's was conducted. It resulted in the 
selection of TF39 high pressure turbine first and second stage vanes and first stage blades 
as the generic repair components. 

1 



In Phase n, advanced processes were transitioned to manufacturing to establish the repair 
procedure. Each repair component was processed through a forty piece pilot line to insure 
manufacturing process control and repeatability. The pilot line concept was used to pro­
vide an accurate assessment of the repair cost. Repair integrity was verified both by non­
destructive inspection of appropriate coupon specimens and also by component metallographic 
examination. 

Phase III included engine testing of components to qualify the repair procedure and Phase 
IV required documentation of the repair procedures by review and issuance of technical 
orders for repair of each component and analysis of the cost effectiveness of each repair. 

Due to an unsatisfactory process yield obtained during the mini-bond repair of stage 1 HPT 
blades, it was decided to rerun the scale-up pilot line using improved materials and pro­
cesses. These results along with the results of the engine test hardware are included in 
this second volume of the final report. 
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SECTION II 

EVALUATION OF PILOT LINE REPAIRED HARDWARE 

Forty pieces (plus several extras) of each component, Stage 1 and 2 high pressure turbine 
vanes, were processed through the pilot line operation described in Volume I of this final 
report. A 100% yield was obtained for each component as indicated in the previous report. 

Twelve of the Stage 1 vanes and fifteen of the Stage 2 components were then submitted for 
evaluation in a TF39 test engine. The specific test cycle experienced by these components 
is referred to as a "C" cycle and is shown in Figure 1. This engine and the repaired com­
ponents were cycled 1000 times through the identified "C" mission profile and then removed 
for evaluation. Visual examination of the Stage 2 repaired vanes indicated performance 
equivalent to a new part and significantly better than a weld repaired part. This successful 
performance, however, was not obtained on the repaired Stage 1 vanes. A majority of the 
repaired areas were found to exhibit cracking and in virtually all cases the degree of 
cracking exceeded that observed on new or weld repaired components. Subsequent evalua­
tion revealed the cause which had already been anticipated because of a previous test con­
ducted on CF6 components using the repair process developed in this program. The 
individual components listed below were those selected for engine test with a further indi­
cation for those evaluated by metallographic examination. 

Component 

Stg 1 HPTV 

COMPONENTS REPAIRED, ENGINE TESTED AND EVALUATED 

S/N Engine Test Metallurgical Evaluation 

62759 
63270 
64142 
65565 
68508 
69510 
70171 
70228 
74092 
74198 
79482 
80106 
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X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 

X 
X 
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COMPONENTS REPAIRED, ENGINE TESTED AND EVALUATED (Cont.) 

Component S/N Engine Test Metallurgical Evaluation 

Stg 2 HPTV 21026 
25550 
31653 
37248 
38034 
45883 
49056 
52026 
52362 
54936 
54954 
55917 
60232 
65491 
76651 

Stage 1 High Pressure Turbine Vane Repairs 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 

X 
X 

Repairs performed on the Stage 1 HPT vane incorporated cracked areas of the leading edge, 
trailing edge (concave surface) aft of the cooling holes and various inner and outer platform 
locations. Build-up surface repair was accomplished on the tang hole surface and forward 
and aft seal slot surfaces. No evidence of cracking or excessive wear was noted on any 
build-up surface repair. Approximately 80% of all locations repaired with the X-40/H-33 
ADH alloy were found to exhibit cracking after the 1000 "C" cycle test. Substitution of a 
X-40/D-15* mixture on CF6-6 Stage 1 HPT vanes processed subsequently and tested earlier 
indicated equivalent performance to weld repair after 2000 "C" cycles, so it can be said 
that ADH repair feasibility has been exhibited with a recommendation for change from the 
X-40/H-33 mixture to X-40/D-15. This change was more fully explained in the first 
volume. 

Three Stage 1 vanes were chosen for metallographic evaluation as indicated previously. 
Figure 2 shows S/N 70228 as it appeared before ADH repair and then after engine test. 
(In all macrophotographs, the before repair condition is at the top and the repaired engine 
run condition at the bottom.) Area A is shown as a repair on the convex surface of the lead 
vane anQ. both visual and metallographic examination (Figure 3) shows this repair as success­
ful. Area B was typical of the repair performed at the lead edge nose holes with the re­
sultant cracking shown in Figure 4. This figure also shows the cracking which initiated in 
the ADH repair in Area C at the trail edge of the lead vane. Figure 5 again illustrates 
cracking which occurred in the ADH repair and Figure 6 shows that crack propagation 
followed the ADH alloy exclusively. Figure 7 shows successful repairs at the trail edge 
of the lead vane and above the trail edge cooling holes on the trail vane as well as the un­
successful repair on both vanes at the leading edge. Nearly all repairs attempted on the 
aft side of both inner and outer platform areas on all twelve vanes were unsuccessful. 

*Dl5 Alloy- 15.3 Cr- 10.3 Co- 3.4 Ta- 3.5 Al- 2.3B- Bal Ni 
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Figure 2, Stage 1 HPTV, S/N 70228, Before ADH Repair 
and After 1000 Cycle Engine Test 
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Figure 3. Photomicrograph in Area A on Stage 1 HPTV, S/N 70228 
Showing Successful ADH Repair After Engine Test 
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Microsection Through ADH Repair on Stage l l:IPrV, S/N 70228, 
Showing Engine Induced Cracking in Areas B (upper) and 
C (lower) 
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Figure 5. Stage 1 HPTV, S/N 70171, Before ADH Repair and After 1000 
Cycle Engine Test Showing Area Examined Metallographically 
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Figure 6, Photomicrograph of Section in Area A on Stage 1 HPTV, S/N 70171, 
Showing Engine Induced Failure Through ADH Alloy and Repair 
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Figure 7. Stage l HPTV, S/N 62759, Before ADH Repair and After 1000 
Cycle Engine Test Showing Successful ADH Repair 
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Stage 2 High Pressure Turbine Vane Repairs 

The Stage 2 HPT vanes which were selected for repairs had been previously repaired by 
welding which was not known at the time of selection. Additionally, the amount of distress 
observed was not too significant; however, in the areas where ADH repairs were accom­
plished, they were 100% successful after the 1000 cycle engine test. All cracks observed 
on the test engine run components occurred where a weld repair had been performed. The 
following photographs and microsections are representative of the observations made on 
the Fluoride Ion cleaned and ADH repaired Stage 2 HPT vanes. Figure 8 shows S/N 54954 
which had an ADH repair performed on the outer platform (Area A) and the trailing edge 
of the lead vane. Area B is representative of cracks found at the leading edge and/or trail­
ing edge after engine test. Figure 9 shows these respective areas where the ADH repair 
was successful and where cracking occurred through a weld repair. Figure 10 shows 
another Stage 2 vane which had repairs performed as indicated by the circled defects and 
then Areas A and B examined metallographically after engine test. Figure 11 shows the 
result of this examination with successful ADH repairs of both a parent metal and weld 
metal crack. Figure 12 shows a Stage 2 HPT vane again typical of successful ADH repair 
and engine induced weld repair cracking. Of note on this component, however, was an in­
complete ADH repair in the outer platform area (Figure 13) which successfully passed the 
engine test, i.e., no crack indication at visual or fluorescent penetrant inspection. This 
photomicrograph indicates satisfactory cleaning but lack of enough ADH alloy to flow through 
the entire crack. These three components serve as typical examples of the remaining 
vanes which had been subjected to the 1000 cycle TF39 engine test. 
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Figure 8. Stage 2 HPTV, S/N 54954, Before ADH Repair and After 1000 
Cycle Engine Test Showing Areas Examined Metallographically 
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Figure 9. 
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LEFT~ SUCCESSFUL ADH REPAIR OF PRIOR WELD CRACK IN AREA A 
RIGHT: ENGINE INDUCED CRACK OF WELD REPAIR IN AREA B 

Microphotographs of Sections From Area A and B of Stage 2 HPTV, S/N 54954 
After 1000 Cycles Engine Test 
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52026 

Figure 10. Stage 2 HPTV, S/N 52026, Before ADH Repair and After 1000 Cycle 
Engine Test. Areas A and B Examined Metallographically. 
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SECTION OF AREA B SHOWING SUCCESSFUL ADH REPAIR OF CRACKED 
WELD REPAIR 

RIGHT: SECTION OF AREA A SHOWING SUCCESSFUL ADH AIRFOIL REPAIR 

Figure 11. ADH Repair on Stage 2 HPTV, S/N 52026, After 1000 Cycle Engine Test 
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Figure 12. Stage 2 HPTV, S/N 55917, Before ADH Repair and After 1000 Cycle 
Engine Test 
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Figure 13, Incomplete ADH Repair on Outer Platform Stage 2 HPTV, S/N 55917, 
After 1000 Cycle Engine Test 
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SECTION m 

REPAIR PROCESS FOR TURBINE BLADE AIRFOILS 

The basic repair process developed for the TF39 Stage 1 HPT blade tip repair consists of 
the same process identified in Volume I utilizing a furnace ADB cycle to join both squealer 
and tip cap in place of the mini-bond process which had resulted in low yields due to in­
adequate process controllability. The furnace ADB cycle resulted in a very successful and 
controllable joint. Component evaluation was limited to metallographic examination only 
due to the time restrictions imposed on program completion. Figure 14 shows a repaired 
blade with a Rene' 80 tip cap and HS188 squealer joined by the ADB process with subsequent 
dimensional restoration of the tip geometry. Figure 15 is a photomicrograph which shows 
the structure at the tip cap-airfoil wall joint after the super diffusion cycle was completed. 
This component followed the sequence previously identified with the following exceptions: 

a. Vacuum furnace ADB at 2200°F /30 minutes and 45 psi applied pressure in 
place of the mini-bond cycle. 

b. Use of Dl5 alloy preforms in place of the original presintered D15 alloy. 

c. Utilization of a diffusion cycle to eliminate borides formed during ADB. 

The diffusion cycle included step processing in vacuum at 2000°F, 2100°F, 2175°F for two 
hours each, then cool to 2000°F for four hours additional and cool to room temperature. 
Components processed to this procedure are to be tested in both component fatigue and a 
suitable engine test vehicle as the equipment and resources become available. 

The initial results indicate both feasbility and controllability of process and utilization of 
this process for functional repair of turbine airfoil blade tips appears quite promising. 
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Figure 14. Stage 1 HPTB Showing Furnace ADB of Rene' 80 Tip Cap and HS 188 
Squealer Tip 
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Figure 15. ADB Joint Between Tip Cap (Upper) and Airfoil Wall (Lower) After 
Diffusion Heat Treatment 
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SECTION IV 

COST EFFECTIVENESS OF REPAIR PROCESSES 

Rationale for Airfoil Repair 

There are many potential benefits which may be accrued by repair rather than replacement 
of engine airfoils. The obvious potential reduction in life cycle costs will be properly 
emphasized; however, other benefits should be considered, 

Non-serviceable parts exposed during overhaul frequently have a large percentage of the 
anticipated service life remaining. Damaged airfoils may, by repetitive repair, attain 
two to three times the normal replacement life. Such a utilization to near full design life 
provides a material conservation in keeping with national goals. 

In the normal situation, the rationale for airfoil repair versus replacement may be more 
sharply focused on pay-off in life cycle management cost reductions to the Air Force. 
The replacement cost per engine overhaul for a specific part, such as Stage 1 High Pres­
sure Turbine Blade, may be expressed as follows: 

Equation 1 

Part replacement cost (PRC) 
Engine Overhaul 

x unit part replacement cost 

Total Number of Parts 
Engine 

Percent Replaced 
x Overhaul 

In total, replacement cost per engine overhaul for turbine airfoils may be expressed as the 
summation of each specific part. This is: 

Total Airfoil Replacement Cost 
Engine OVerhaul L C1 + C2 + C3 + C4 ---

where C1, C2, etc., represent the part replacement cost of each unique part as defined 
by equation 1. 

For life cycle management, the total turbine airfoil replacement cost may be expressed as 
follows: 

Total Airfoil Replacement Cost 
(per engine per life) 

(C + c + c + c ) x (Number _of Ov_erhauls) 
· 1 2 3 4 Engme L1fe 
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The cost reduction potential of repair may be determined by examination of the factors 
which constitute the part replacement cost, PRC, Equation 1. Thus, if Y is assigned as 
the number of a unique component part requiring replacement at engine overhaul, then 

Part Replacement Costs (PRC) = Y (% initial scrap not repairable x new part cost 
+ % repaired x repaired part cost) 

This Part Replacement Cost can be further expanded to reflect the yield of the repair 
process. Thus: 

PRC = Y (% initial scrap x new part cost + % repair yield x repair cost + % repair process 
scrap x new part cost+% repair process scrap x accumulated repair cost when 
scrapped). 

or rearranged: 

Equation 2 

PRC Y (% initial scrap +% repair process scrap) x new part cost+ (% repair yield x 
repair cost) 
+ % repair process scrap x accumulated repair cost when scrapped). 

This basic equation provides a rationale for replacement or repair of airfoils or other 
component parts at overhaul. For example, if new part cost is given the value of 1, and 
assuming some typical values for the other variables: 

Repair cost 60% of new part cost 
Repair cost when scrapped during repair process = 30% of new part cost 
Percent initial scrap = 33% of total parts 
Percent repair process scrap 13% of total parts 

Then, part replacement cost for a single part, Y 1 is: 

PRC (0. 33 + 0. 13) 1 + (1. 00 - (0. 33 + 0.13)) (0. 6) + 0.13 (0. 3) 
PRC = 0. 46 + 0. 32 + 0. 04 = $0.82 

This illustrates, that under these assumptions, for each $1.00 of part cost, $0. 18 may be 
saved by repair. It is important to note that an increase in the percentage of repairable 
parts which start the repair cycle and increased repair yield also contribute heavily to re­
duction of replacement cost. 

If, for example, initial input was 90% versus 67% and process yield was improved to 95%, 
then: 

PRC = (0.10 + 0.05) 1 + 0.85 (0.6) + 0.05 (0.3) 
PRC 0.15 _._ 0. 51+ 0.02 = $0.68 
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The cost saving by repair would be increased to $0. 32 per $1.00 of replacement part cost. 

It is also obvious that repair cost as a percentage of replacement part cost is an important 
factor. If, for example, it is assumed that repair cost is 50% rather than 60% of replace­
ment part cost in the first example, the 

PRC = (0. 33 + 0.13) 1 + 0. 54 {0. 5) + 0. 13 (0. 25) 
PRC=0.46+0.27+0.03 $0.76 

The cost savings would be $0. 24 per $1.00 of replacement part cost. 

These examples illustrate the importance of identifying a repair process which allows a 
larger percentage of parts to be repaired without, at the same time, introducing additional 
process steps which increase repair cost. These examples also stress the importance of 
repair yield since money spent to process parts ultimately scrapped must be applied 
against the cost of repaired parts. 

In summary, the examples are given to emphasize that increased repairability and in­
creased repair yields are clearly as important as a decrease in actual repair cost. 

Cost comparison of Repair Processes 

Phase I studies were used to identify and prioritize the repair processes to be used in this 
program. Phase IT included the pilot line processing of each component to the identified 
repair process to insure manufacturing process control, repeatability, and provide an 
accurate assessment of the repair cost. 

A detailed breakdown of repairable components utilizing an alternative repair technique 
was performed based on experience gained in commercial engine repair of CF6-6 engines. 
Repair experience on the CF6-6 commercial engine is considered applicable to the TF39 
since the HPT modules are virtually identical. Extensive flight hours have been logged 
on CF6-6 components and are useful in serving as a guide to potential distress from long 
time engine operation. 

Tables 1 and 2 show the repair allowances with applicable locations defined by current pro­
cedures for weld repair of the respective components. 

When we look at this data, we can see one of the reasons for cost effectiveness of the ADH 
repair process, i.e., reduction of non-repairable hardware. Taking into consideration 
an additional improved process yield as ADH repairs do not experience the distortion 
problems and dimensional discrepancies observed in weld repair, we see that the ADH re­
pair concept shows a cost savings over the current method of repair and a very demon­
strated cost effectiveness then over new part replacement. 
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TABLE 1 

REPAIR LOCATIONS 
CF6-6 - VANES STAGE 1 - IflGH PRESSURE TURB1NE 

X-40 MATERIAL 

CF6-6 % Current RelXir 
Total Inspected 1847 of Total ( HJO) ~ommercial -ir Force 

Repairable to Current 1232 (67) Weld replacement Weld replace 
Limits trailing edge one vane of 

pair 

Trailing Edge Re- 885 (48) 
placement 

Crack Repair-Plat- 347 (19) Weld all areas Weld Platform 
forms, Airfoil, and Flange 
Flange, etc. only 

Scrap to Current Limits 615 ~ None None 

Leading Edge Distress 602 % (98) of Scrap 

Airfoil Distress 13 ( 2) 

CF6-6 VANES STAGE 2 HIGH PRESSURE TURBINE 
R' 80 MATERIALS 

Total Inspected 

Repairable 

Scrap (Total) 

Cracks/ Airfoil Fillet 
Radius 

Cracks/Outer Plat­
form 1. on 
Cracks/Airfoil 0.600" 

Thin Outer Platform 

Metal Deterioration/ 
Outer Platform 

FOD 

Other 

912 

540 

221 

115 

31 

27 

15 

22 

109 

% Current Repair 
100 Commercial Air Force 

(63) % of total Weld Repair Cracks None 

( 37) % of total None None 

%of Scrap 

( 41) 

(21) 

( 6) 

( 5) 

( 3) 

( 4) 

(20) % of Scrap 
(7. 5% of Total 
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Total Inspected 

Repairable - Tip 

Total Scrap 

TABLE 2 

REPAIR LOCATIONS 
CF6-6 STAGE 1 BLADES - IITGH PRESSURE TURBINE 

R' 80 MATERIAL 

CF6-6 % Current Repair 
i'i5S ioo i:! om me rcial Air Force 

312 48% Weld Build-70 Weld Build-up 
Tips Tips 

346 52% of total None None 

Trailing Edge Cracks 263 (76) 

Erosion 14 ( 4) 

Nosehole Cracks 32 (9. 5) 

Rail/Angel Wing 
Under Min 

Nicks & Dents 15 (4. 3) 

Other 13 ( 4) 

Tip Cap Cracks 

Plugged Holes 4 (1. 1) 

Foreign Materials 5 (1. 4) 

Utilizing this data, we can further simplify the breakdown resulting in the following tabu­
lation: 

Component 

Stg 1 HPTV 
Stg 2 HPTV 
Stg 1 HPTB 

No. Inspected 

1847 
1452 
658 

Repairable 

67% 
63% 
48% 
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Repairable 
Scrap by ADH/ADB 

33% 95% 
37% 95% 
52% 48% 



The accumulated costs associated with the repair processes demonstrated in this program 
along with an equivalent cost of the current weld repair method are presented below as a 
function of the equivalent new part cost to protect a competitive position in the commercial 
market. 

Part Designation 

Stage 1 HPTV 

Stage 2 HPTV 

Stage 1 HPTB 

New Part Cost 

1.0 

1.0 

1.0 

ADH/ ADB Repair Cost 

0.33 

0.32 

0.45 

Weld Repair Cost 

0.37 

0,39 

0.37 

The ADB repair demonstrated on the high pressure turbine blade established a cost effec­
tive method for blade replacement. The higher cost associated with this method as opposed 
to weld repair is due to the additional tip cap replacement which allows inspection of the 
internal cooling cavities. 

The economics of the process for both turbine stator components as well as the one rotor 
component demonstrate the cost effectiveness of the repair concept in lieu of new part 
replacement for total engine life cycle management. Additionally the advanced techniques 
developed in this program utilizing both ADH and ADB technology further extend the 
capability and cost savings afforded in turbine airfoil repair. 
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